
LECTURE 25: ULTRAPRODUCTS

CALEB STANFORD

First, recall that given a collection of sets and an ultrafilter on the index set, we formed an ultraproduct
of those sets. It is important to think of the ultraproduct as a set-theoretic construction rather than a model-
theoretic construction, in the sense that it is a product of sets rather than a product of structures. I.e., if Xi

are sets for i = 1, 2, 3, . . ., then
∏
Xi/U is another set. The set we use does not depend on what constant,

function, and relation symbols may exist and have interpretations in Xi. (There are of course profound
model-theoretic consequences of this, but the underlying construction is a way of turning a collection of sets
into a new set, and doesn’t make use of any notions from model theory!)

We are interested in the particular case where the index set is N and where there is a set X such that
Xi = X for all i. Then

∏
Xi/U is written XN/U , and is called the ultrapower of X by U . From now on,

we will consider the ultrafilter to be a fixed nonprincipal ultrafilter, and will just consider the ultrapower
of X to be the ultrapower by this fixed ultrafilter. It doesn’t matter which one we pick, in the sense that
none of our results will require anything from U beyond its nonprincipality.

The ultrapower has two important properties. The first of these is the Transfer Principle. The second is
ℵ0-saturation.

1. The Transfer Principle

Let L be a language, X a set, and XL an L-structure on X. Let U be a nonprincipal ultrafilter on XN.
Let Y = XN/U .  Loś’s theorem tells us that we can interpret Y as an L-structure YL in a natural way, and
that for any L-sentence ϕ:

YL � ϕ ⇐⇒ {i : Xi � ϕ} ∈ U
⇐⇒ {i : XL � ϕ} ∈ U
⇐⇒ XL ` ϕ.

In other words, in the Ultrapower case,  Loś’s theorem collapses down to the simple statement that YL is
elementarily equivalent to XL.

But wait! Remember that Y itself is simply a set that is a function of the set X. The above will be true
for ANY L-structure that we put on X; we will always get a corresponding L-structure on Y that satisfies
the elementary equivalence.

So, let L be the set of ALL functions, relations, and constants on X. This includes a symbol for every
function and relation and constant you may be interested in, but it also includes symbols for everything else:
many functions and relations and constants which you never thought to consider, and many which can’t
be written down explicitly. Then YL and XL are elemantarily equivalent. This is known as the Transfer
Principle. We restate it below, introducing some new notation that is often used.

Theorem 1. (Transfer Principle) Let X be a set. Let ∗X (what we have been calling Y ) be an ultrapower
of X. Let c1, c2, c3, . . . be constant elements of X, let R1, R2, R3, . . . be relations on X, and let F1, F2, F3, . . .
be functions on X. Let ∗c1,

∗c2, . . .,
∗R1,

∗R2, . . .,
∗F 1,

∗F 2, . . . be the corresponding constants, relations,
and functions on ∗X. Let ϕ be a first-order sentence over the language {ci, Ri, Fi}, and let ∗ϕ be the
corresponding first-order sentence over the language {∗ci, ∗Ri,

∗F i}. Then X � ϕ if and only if ∗X � ∗ϕ.

Proof. From  Loś’s theorem, as described above. �

Here are some examples.

Example 1. Let X = R. In R it is true that ∀x : |x| ≥ 0. Therefore, in ∗R, ∀x :
∗|x| ≥ 0.
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Example 2. Let X be the set of finite binary strings. Let ◦ denote concatenation. In X it is the case that
∀x∀y∀z : (x ◦ y) ◦ z = x ◦ (y ◦ z). Therefore, in ∗X, ∀x∀y∀z : (x ∗◦y) ∗◦z = x ∗◦(y ∗◦z).

First-order logic generally forces us to quantify over the entire set X and not over a subset of X. But
a subset of X is actually an element of our language now (a unary relation), so we can formalize e.g. the
statement “x is in the Cantor set” as Cx, where C denotes this unary relation. Thus the Transfer Principle
also gives us things like:

Example 3. (open set) A set A is open in R if and only if

∀x ∈ A ∃ε ∈ (0,∞) ∀y ∈ R : (|x− y| < ε→ y ∈ A)

Therefore, for any open set A of R we have

∀x ∈ ∗A ∃ε ∈ ∗(0,∞) ∀y ∈ ∗R : (
∗|x− y| ∗<ε→ y ∈ ∗A).

Since X is embedded in ∗X, in the future, we will generally think of X as being a subset of ∗X. We will
then generally omit the ∗ before constants, functions, and relations, with the exception that we distinguish
between a set A ⊆ X and its corresponding set ∗A. Just to illustrate why this is not ambiguous:

• For constants, if we say “let c ∈ X”, this also implies that c ∈ ∗X, as we are thinking of X as a
subset of ∗X. We are also allowed to use c in any transfer principle arguments.

• If on the other hand we say “let c ∈ ∗X”, it is perfectly clear what we mean, but we are not then
allowed to apply the transfer principle to sentences involving c.

• For relations, if we say “let R be a binary relation on X”, it is clear what we mean. Then R extends
naturally to a binary relation on ∗X, so we can compare both things in X and things in ∗X using
R. Note that it is important here that ∗R agrees with R on X.

• If we say “let R be a binary relation on ∗X”, then R is also well-defined on all of ∗X as well as X,
but we can’t apply the transfer principle to a sentence involving R.

• Similarly, functions f defined on X are assumed to be extended automatically in the natural way to
∗X, but functions defined on ∗X originally cannot be dealt with by the transfer principle.

• Finally, when we fix a subset A of X, this is to be thought of as different than a unary relation on
X. A unary relation would extend naturally to ∗X via the transfer principle, but A is considered to
be a fixed subset of X which is in turn a subset of ∗X; A is the same subset of ∗X as it is of X. If
we want to consider the corresponding (different) subset of ∗X, we will write ∗A.

In summary, we are able to keep things straight if we just remember whether the function or relation was
defined originally on X, or on ∗X.

2. ℵ0-Saturation

Up to this point, it has seemed that ∗X is just a bigger version of X; elementarily equivalent, in fact. So
what use is there in defining it? If it is so similar to X, why not just use X?

The answer is that we also have a lot more than just was in X, and we can exploit that. For instance,
the archimedian property (which is not first-order) holds in R but not in ∗R, and this turns out to allow us
to define calculus of R using infinitesimal elements of ∗R.

Theorem 2. (ℵ0-saturation) Let T = (ϕ1, ϕ2, . . .) be a countable set of formulas in free variables u1, u2, . . . , uk.
Suppose that every finite subset Σ of T has a solution in Xk. Then T has a solution in (∗X)k.

Proof. Define infinite sequences u1, u2, . . . , uk ∈ ∗X by

u1 := (1u1, 2u1, 3u1, . . .)

u2 := (1u2, 2u2, 3u2, . . .)

. . .

uk := (1u3, 2u3, 3u3, . . .)

such that iu1, iu2, . . . , iuk is a solution in Xk for the finite set of formulas Σi := (ϕ1, ϕ2, . . . , ϕi). Then
observe that for each ϕj , there are only finitely many i such that ϕj is not in Σi, and hence there are only
finitely many i for which iu1, iu2, . . . , iuk is not a solution to ϕj . Therefore, the set

{i : Xi � ϕj(iu1, iu2, . . . , iuk)}
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is cofinite, therefore being a member of our ultrafilter. This implies by the definition of satisfaction in ∗X
and by  Loś’s theorem that

∗X � ϕj(u1, u2, . . . , uk)

This is true for any ϕj , so ∗X � T (u1, u2, . . . , uk). �

Example 4. In R, let T be the set of formulas

{x < 1, x < 1/2, x < 1/3, . . .}
Then there is an element x ∈ ∗R satisfying the above. This is called an infinitesimal.

Example 5. In N, let T be the set of formulas

{1 | x, 2 | x, 3 | x, . . .}
Then there is an element x ∈ ∗N satisfying all the above, i.e. there is a hypterinteger divisible by every
integer.

Example 6. In R, take T to be

{x > 1, x > 2, x > 3, . . .} ∪ {y > x, y > x2, y > x3, . . .}
The result is two hyperreal numbers, x and y, both infinite, but such that y is much bigger than x.

3. Applications

3.1. Infinitely many primes. In class, we proved that there are infinitely many primes. The idea is to
form a hyperinteger divisible by every standard prime number, then to add one. The resulting hyperinteger
must be divisible by a hyperprime, but it isn’t divisible by any standard primes. As a lemma, a subset
S ⊆ X is finite if and only if ∗S = S. So the fact that there are hyperprimes which are not prime means
that the set of primes is infinite.

3.2. ZFC. (Background: ZFC is the first-order theory of set theory. The language of ZFC consists only of
the binary relation ∈.)

Assume ZFC is consistent. Then there is a model of ZFC, call it M . Let ω be the element of M
corresponding to the natural numbers, the first uncountable ordinal. Consider the set of formulas

T = {x ∈ ω, x 6= 1, x 6= 2, x 6= 3, . . .}
Every finite subset of T is satisfiable in M . Therefore, by ℵ0-saturation, T is satisfiable in ∗M . That is, the
set of natural numbers ω in ∗M actually contains something which is not a natural number.

Why is this a problem? Well, it is true in ZFC that every nonzero natural number has a predecessor, so
x has a predecessor x1, which has a predecessor x2, and so on. None of these are equal to any of 1, 2, 3, . . .,
else x would be equal to one of 1, 2, 3, . . . just by applying taking a few successors of xi.

So x1, x2, x3, . . . is an infinite decreasing chain of “natural numbers”. Worse, it is an infinite decreasing
chain of ordinals; each is contained in the next! And taking the set

S = {x1, x2, x3, . . .}
we find that S contains no element disjoint from itself, which violates one of the axioms of set theory (axiom
of regularity).

What gives? Well, we can externally write down S in our meta-theory, and claim it is a set, but the
bizarre model of ZFC ∗M does not know about S. Nor does this model of ZFC have any way to form the
infinite decreasing chain x1, x2, x3, . . . and compile it into a single list. Just to illustrate this, notice that the
usual definition of a countable list is a function from ω to a set; yet ω is much larger in ∗M than it is in our
standard understanding of ZFC.
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