
Static verification of program running time

CIS 673 course project report

Caleb Stanford

December 2016

Contents

1 Introduction 2
1.1 Total Correctness is Not Enough . 2
1.2 Project Description . 3

2 SPEED 3
2.1 Goals for automatic bound generation . 4
2.2 Procedure . 4
2.3 Key Techniques . 6
2.4 Research ideas . 6

References 7

1

1 Introduction

1.1 Total Correctness is Not Enough

At the most general level, the goal of formal verification is to prove that a given program, C, adheres to some
specification S. Thus, in general the nature of verification is dependent on both the programming language
(syntax of C) and the nature of the specification (syntax of S).

In the Hoare style1, the specification S consists of a pre-condition P and a post-condition Q, which are
both predicates (boolean functions) of the program state at a fixed time. We say that C is correct with
respect to S if, when if the program is started in a program state satisfying the pre-condition P , and the
program is executed, the post-condition Q is satisfied. If C does not halt, we distinguish between total
correctness and partial correctness. Let h be the event that C halts. We may notate the difference between
them as follows:

Partial Correctness: (P ∧ h)→ Q.

Total Correctness: P → (h ∧Q).2

Less formally:
Total Correctness ≡ Partial Correctness + Termination.

Partial correctness is sufficient to catch all bugs in which the program, on a well-formed input, produces
an incorrect output (where “incorrect” is relative to the specific application). In contexts where performance
is a concern, however, partial correctness is not enough. A classic example is that a program which doesn’t
halt can be proven to satisfy any specification. In the following program, the programmer intends to add
the numbers from 1 to X, but forgets to increment the loop counter I.

1 Total := 0

2 I := 1

3 while I <= X :

4 Total := Total + I

5 return Total

Unfortunately, this program still satisfies partial correctness with respect to its specification, say

{X = n ∧ n > 0} C

{
Total =

n(n + 1)

2

}
.

In fact, the program is partially correct with respect to any specification, because it never halts. Total
correctness, in contrast, cannot be proven except for the correct specification. So total correctness has the
advantage (and motivation) of catching unintended infinite loops in a program.

However, total correctness (while providing a stronger guarantee than partial correctness), does not
protect against performance bugs in general. In practice, the difference between non-termination and termi-
nation in an unreasonable amount of time is negligible (i.e., not empirically observable). Consider a different
program:

1 Total := 0

2 I := 1

3 while I <= 2000000000 :

4 if (I <= X) :

5 Total := Total + I

6 I := I + 1

7 return Total

1See Hoare’s original paper, [1].
2Technically, one has to decide whether to take Q to be true or false in an execution which does not terminate. However,

the formulas (P ∧ h) → Q and P → (h ∧Q) evaluate to the same thing in either case.

2

It is not too difficult to prove that this new program is totally correct with respect to the same specification
as before (if we assume that n ≤ 2000000000). But the correctness in this case is not useful, because the
program will not terminate quickly.

In practice, hidden blowup in the runtime of a program will not be so artificial. Even the difference
between linear and quadratic runtime (such as might be caused by an accidental linear-time operation within
a performance-critical loop) may be the difference between a program which terminates instantaneously and
one which does not seem to terminate at all. However, such programs will still be totally correct with respect
to their specification. In summary, if we are interested in proving termination at all, then we should really
be interested not just in proving termination, but in proving termination within a specified amount of time.
This argument is summarized in [2] by the following slogan:

Partial Correctness + Time > Total Correctness.

1.2 Project Description

For the project, I looked at two specific papers which use verification techniques to (statically) prove prop-
erties of program running time.

My main focus was the question of automatically inferring upper bounds on the runtime of programs. In
practice, it is infeasible to require programmers to state and prove runtime bounds explicitly; performance
guarantees of core software are usually not formally proven. Automatically generating correct and precise
bounds on program runtime is a foolproof way to check for performance bugs at no additional cost to the
user. The authors in [3] introduce a framework and methodology for automatic generation of these bounds,
and implement their ideas in a tool called SPEED. In section 2, I have summarized the paper’s results as I
understand their relevance, and commented on how their framework might be applied to future research.

Another context where runtime guarantees are important is in the context of security, when a computation
is carried out on sensitive data. Such computations can be subjected to timing-based attacks, which use the
time the computation takes to terminate to get some information about the control flow that must have
occured, and then deduce something about the sensitive data. The problem is, given an (allegedly safe)
algorithm, to automatically verify that the runtime does not in fact depend on the sensitive parameters. I
read a paper [4] which cleverly addresses this problem.

The techniques of [4] end up being quite different than those of [3]. A bound on runtime is unhelpful
in protecting against timing-based attacks; instead, it is necessary to prove that the exact runtime doesn’t
depend on certain parameters. However, in fact finding the exact runtime is unnecessary, and [4] sidesteps this
problem entirely; instead, the paper develops a model of what it means for a program to leak information,
and defines security as a program which does not leak information. In fact, instead of dealing with the
running time, they consider the actual control flow of a program to be leaked, and proving security means
proving that given the actual control flow an attacker cannot deduce sensitive information.

Because the second paper [4] did not relate as much as I had hoped to the first paper [3], and because
summarizing and interpreting the results of both [3] and [4] (without really being able to combine the two
summaries) would have been difficult in only a few pages, I decided to focus on [3] exclusively for the
remainder of this report.

2 SPEED

First without any automation, here is the general strategy to prove an upper bound T ≤ B on the runtime
T of a program, where B is an expression in the input parameters. First, introduce increments to T as
appropriate in the program (in general, T can be incremented by any amount at every command, but in
practice it will be sufficient to only increment T at every iteration of each loop, so we are really bounding
the number of loop iterations). Then, prove loop invariants on every loop such that every loop invariant
logically implies T ≤ B.

The hard part of this, that needs human input in general, is specifying the bound B, and specifying the
loop invariants. In [3], the authors provide a way of automatically inferring a relatively tight bound B (with
a proof of correctness). The method is implemented in the tool SPEED. Since automatically inferring and

3

proving the runtime of a program will not be possible in general, the method sacrifices a lot of generality for
heuristics and a simple way of generating bounds that often works well in practice.

2.1 Goals for automatic bound generation

The goal of SPEED is to be an algorithm which automatically infers a bound on the number of loop iterations
in simple programs. Specifically, instead of loop iterations we speak of back-edges. A program has a back-
edge every time the control goes from a lower point in the program to a higher point. In other words, every
time it jumps to the top of a loop. If there are multiple if branches inside a loop, we put a back-edge at the
end of each one.

1 def f1(x0, y0, m, n) :

2 x := x0; y := y0

3 while (x < m) :

4 if (y < n) :

5 y++

6 else :

7 x++

Back-edges: In this code there are two, from line 5 to line 3, and from line 7 to line
3. We may denote them by (5,3) and (7,3).

Goal: Given a program P , automatically infer an upper bound B in terms of the input parameters on the
total number of times a back-edge is traversed.

Note that whatever algorithm we come up with, it will fail on some program inputs, because deciding a
bound in general will be undecidable. But we would like the algorithm to work well in practice. Specifically,
it should satisfy these competing specific goals:

1. Correct We should never output an incorrect bound. (But we are allowed to fail.)

2. Successful The algorithm should not fail on too many programs in practice; it should produce a bound
for a significant percentage of programs.

Note that stating bounds for most programs requires use of max, and for programs with greater than
linear runtime, use of ·. So a minimum requirement is that we are able to infer bounding expressions
which use max, ·,+.

3. Precise More than just producing a bound, it should produce a tight bound. The bound should not be
too much higher than the actual runtime of a program.

4. Efficient Our algorithm must run quickly enough to work on real code.

2.2 Procedure

Generating the bound

Given a program, the first step is to assign a counter to each back-edge. We may use the same counter
multiple times, but allowing multiple counters is sometimes necessary for a linear invariant to be generated.
This is true of the example program f1.

f1 has two back-edges; we modify it by assigning to the back-edges counters c1 and c2, set them to 0
at the start of the program, and increment them at the corresponding back-edge. From here, the linear
invariant generation tool gives us invariants {y0 + c2 = y ∧ y ≤ n} and {x0 + c1 = x∧ x ≤ m} which hold at
the two back-edges. These two invariants imply bounds on c1 and c2 at the back-edges, namely c2 ≤ n− y0
and c1 ≤ m− x0, respectively.

4

1 def f1(x0, y0, m, n) :

2 x := x0; y := y0; c1 := 0; c2 := 0

3 while (x < m) :

4 if (y < n) :

5 y++; c2++ {y0 + c2 = y ∧ y ≤ n}
6 =⇒ {c2 ≤ n− y0}
7 else :

8 x++; c1++ {x0 + c1 = x ∧ x ≤ m}
9 =⇒ {c1 ≤ m− x0}

Why do we need two counters? With only one counter c, the linear invariant generation tool could find that
x0 + y0 + c = x+ y holds at both back-edges, as does x ≤ m. But y ≤ n only holds at the second back-edge;
at the first back-edge, we instead need y ≤ max(n, y0). But the linear invariant generation tool cannot come
up with y ≤ max(n, y0) since that is not a linear constraint on y.

So we use two separate counters to make the linear generation tool able to give us bounds. Altogether,
we want to bound the number of back-edges traveled total, T = c1+c2. Note that we cannot say c1 ≤ m−x0

unless that back-edge is traversed at least once, so T ≤ (m− x0) + (n− y0) is not a correct bound. But we
can say that either c1 is 0, or it is bounded by m− x0, i.e. it is bounded by max(0,m− x0). So the bound
we automatically infer is

T ≤ max(0,m− x0) + max(0, n− y0).

(Note that there are better bounds possible, for example max(0,m−x0 + max(0, n− y0)). Since the method
is automatic, it doesn’t consider a more general form for the bound.)

This approach is all that we need to generate bounds if the runtime of the program is linear in the input.
However, SPEED is able to generate multiplicative bounds, like max(0,m) ·max(0, n). The way to do this is
more clever. SPEED considers the possibility of adding to the program counter dependencies: if cj depends
on ci, then every time ci is incremented cj is set back to 0 again. This is where products come in. If we are
able to bound ci by Bi whenever it is incremented, and cj by Bj whenever it is incremented, then overall ci
back-edges are traversed at most max(0, Bi) times in total, and cj back-edges are traversed at most

(max(0, Bi) + 1) ·max(0, Bj)

times in total.
Here is an example of this:

1 def f3(m, n) :

2 x := 0; y := 0; c1 := 0; c2 := 0

3 while (x < m) :

4 if (y < n) :

5 y++; c2++ {y = c2 ∧ y ≤ n}
6 =⇒ {c2 ≤ n}
7 else :

8 y = 0

9 x++; c1++; c2 = 0 {x = c1 ∧ x ≤ m}
10 =⇒ {c1 ≤ m}

The bound c2 ≤ n holds whenever it is incremented, and c1 ≤ m holds whenever it is incremented. So the
overall bound on the program running time is

max(m, 0) + (max(m, 0) + 1) ·max(n, 0).

Search space

The procedure given up to now explains how to get a bound given assignments of counters to every back-edge,
and dependencies between the counters. This defines a search space of all possible counter-assignments and
counter-dependencies. Given any state in the search space, the procedure given either generates a bound,
or fails (if the linear invariant generation tool fails). The goal is to search through the search space and find
the best bound. The size of the space is exponential, so we must search through the space efficiently.

5

However, given two bounds generated by the procedure, since they involve max it is not easy to tell which
is a better bound. The authors of SPEED instead choose to go off of two heuristics: (1) fewer counters tends
to lead to a better bound; (2) fewer dependencies tends to lead to a better bound. They then simply search
through the search space for an assignment of counters to back-edges and dependencies between counters for
which the linear invariant generation tool succeeds, and for which the number of counters and dependencies
are minimal. The algorithm for doing this is greedy.

2.3 Key Techniques

This procedure, implemented in SPEED, achieves a good balance between the 4 goals given in 2.2. While
the techniques in the paper are introduced in order to create SPEED, they are based on much more general
high-level ideas. This same general framework could be used to design other tools.

Here is how each of the goals was addressed:

1. To achieve correctness, SPEED makes use of a linear invariant generation tool, and only provide
bounds which are implied by the invariants generated by the tool. SPEED will fail if the invariant
generation tool fails to find an invariant, or if the invariant found does not imply a bound.

It seems to me that using an invariant generation tool of some sort (or requiring invariants from the
programmer) is unavoidable. In order for a generated bound on the program’s runtime to be correct,
it is necessary and sufficient that the bound is true at every back-edge. If the bound is to be proven
correct, it seems unavoidable that we need a loop invariant at every back-edge.

2. One big key to SPEED being successful (able to generate a bound at all) is that it actually incorporates
the sizes of data structures into its bounds. For example, SPEED internally has a semantic specification
of Len L for lists L–that it increases by one when you append an element, and decreases by one when
you remove an element. The invariant generation tool is able to use this specification to incoporate
Len into generated loop invariants, and in turn into the generated bounds. I did not discuss this in the
procedure.

3. To achieve precision, we saw that SPEED uses a multiple-counter technique that generates bounds
involving max,+, and ·. This form of the bounds generated is general enough to be precise in practice.

4. Finally, efficiency. Recall that the context is this:

• We have some search space of modified programs that we look through.

• For each modified program, we are able to produce a bound, or fail.

• We try to find an optimal bound in the search space.

Efficiency was achieved in two ways: (i) by restricting the search space so that it is manageable enough
(but it will still be exponential), and (ii) instead of finding the optimal bound, which would require
searching the entire space and being able to compare any two bounds, using a heuristic to find a bound
that is likely close to optimal in practice, but not necessarily actually optimal. (The heurstic was,
namely, fewer counters and fewer dependencies.)

2.4 Research ideas

What I am most interested in is using this same general framework to automatically generate bounds in a
different way. Specifically, the framework is:

1. Define some search space of counter-modified programs (perhaps allowing different sorts of relationships
between the counters, rather than just the basic dependencies);

2. Use an invariant tool to generate bounds on the counters, given the counter-modified program;

3. Use a heuristic to search through the space of all counter-modified programs and find a close-to-optimal
bound.

6

With respect to (1), can we generalize the counter-placement to produce bounds of a more general form?
For example, how would a bound like max(0,m + max(0, n)) arise? It does not come out of the counter
placement used by SPEED. What about a bound like n log n – how might we automatically infer that with
counter placement?

With respect to (2), can we use a more sophisticated invariant generation tool? Alternatively, we can drop
the requirement that the whole process be automatic, and require some user input for the loop invariants.
This would open up the way for more much sophisticated bounds to be generated.

With respect to (3), is there a better heuristic, or a way of actually comparing bounds, instead of
just using a heuristic? For instance, it might be natural to plug in some random specific values, like
m,n = 100, 1000, 10000 into two bounding expressions and just see which one seems to be lower, and that
would be extremely an efficient heuristic.

References

[1] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, 1969.

[2] Eric CR Hehner. Specifications, programs, and total correctness. Science of Computer Programming,
34(3):191–205, 1999.

[3] Sumit Gulwani, Krishna K Mehra, and Trishul Chilimbi. Speed: precise and efficient static estimation of
program computational complexity. In ACM SIGPLAN Notices, volume 44, pages 127–139. ACM, 2009.

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. Verifying
constant-time implementations. URL: https://fdupress. net/files/ctverif. pdf, 2016.

7

	Introduction
	Total Correctness is Not Enough
	Project Description

	SPEED
	Goals for automatic bound generation
	Procedure
	Key Techniques
	Research ideas

	References

