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Abstract

This research examines a generalization of the
context-directed reversal operation on signed permu-
tations to an operation on two-rooted graphs. Results
include a cdr-sortability condition, characterization of
a cdr and gcdr invariant, and graph enumerations.

Signed Permutations

Signed permutations are arrangements of the first
n natural numbers with associated positive and neg-
ative signs. Signed permutations are used to model
genome recombination.

Pointers are assigned to each side of each entry of
a signed permutation, as follows:
0(0,1) [(1,2)2(2,3) (4,5) − 4(3,4) (0,1)1(1,2) (2,3)3(3,4)] (4,5)5.

CDR

The cdr (context-directed reversal) operation can be
applied to a pointer pair that is associated with en-
tries with different sign. cdr reverses and negates the
entries between the pointers.
Example: Applying cdr at (3, 4) on the permutation
[2,−4(3,4), 1, 3(3,4)] yields [2,−4,−3,−1].
A signed permutation is cdr-sortable if some se-
quence of cdr moves yields the identity permutation
[1, 2, 3, . . . , n].

The Overlap Graph

The overlap graph of a signed permutation is
construted so that vertices represent pointers and
edges represent pointer pairs that follow the pattern
p . . . q . . . p . . . q.
Example:
0(0,1)[(4,5) − 4(3,4), (0,1)1(1,2), (2,3)3(3,4), (1,2)2(2,3)](4,5)5
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•Each signed permutation generates a unique
overlap graph.

•A pointer is oriented if it is associated with
entries with different signs. A vertex of an overlap
graph is oriented if and only if it has odd degree.

Two-Rooted Graphs and GCDR

A two-rooted graph is a labeled graph with two
distinguished vertices denoted with diamonds, also
called roots.
gcdr operates on a non-root oriented vertex v of a
two-rooted graph by complementing all of the edges
in its neighborhood. For a signed permutation, per-
forming gcdr on a vertex of the overlap graph is equiv-
alent to performing cdr on the corresponding pointer
in the permutation.

Parity Cuts

A parity cut of a two-rooted graph G = (V,E) is
a partition of V into V1 and V2 such that for each
non-root v ∈ V1, v is adjacent to an even number of
vertices in V2, and for each non-root w ∈ V2, w is
adjacent to an even number of vertices in V1.
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The a-b-c Trichotomy

A two-rooted graph G with roots x, y satisfies
• property (a) if there is a parity cut {V1, V2} of G such that x ∈ V1, y ∈ V2, x is adjacent to an even
number of vertices in V2, and y is adjacent to an even number of vertices in V1;

• property (b) if there is a parity cut {V1, V2} of G such that x ∈ V1, y ∈ V2, x is adjacent to an odd
number of vertices in V2, and y is adjacent to an odd number of vertices in V1;

• property (c) if there is a parity cut {V1, V2} of G such that x, y ∈ V1, and x, y are each adjacent to an odd
number of vertices in V2.

The gcdr-digraph of size n = 3: vertices represent graphs of size 3 and edges denote legal gcdr moves between vertices. Blue vertices correspond to signed
permutations. This graph forms three nontrivial components for n ≥ 4 that correspond to (a),(b), and (c). Components (a) and (b) are isomorphic under
reverse negative, or complementing the edge between the two roots.

Trichotomy Results

•Every finite two-rooted graph satisfies exactly one of (a), (b), or (c).
•Properties (a),(b), and (c) are invariant under gcdr and cdr.
•Every cdr-sortable permutation satisfies (a).

Enumerative Results

The number of graphs of size n satisfying (a), (b)
and (c) is given below for small values of n:

n a(n) b(n) c(n)
1 1 1 0
2 3 3 2
3 23 23 18
4 351 351 322
5 11119 11119 10530
6 703887 703887 689378

For all n ≥ 2:
c(n) = (2n − 2)a(n− 1).

This leads to an explicit formula:

a(n) =
n−1∑
k=0

 k∏
i=1

2i+1
 n−1∏

i=k+1
(1− 2i)

 .
Asymptotically,

lim
n→∞

a(n)
a(n) + b(n) + c(n)

= lim
n→∞

a(n)
2(n+1

2 ) = 1
3
.

CDR Sortability Theorem

Given a signed permutation π of size n, the fol-
lowing are equivalent:
(i) π is cdr-sortable;
(ii) π satisfies (a), and every component of the
verla graph of π contains an oriented vertex.
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